Ruchowa średnia linia formuła


Średnia ruchoma Ten przykład ilustruje obliczanie średniej ruchomej serii czasowej w programie Excel. Średnia ruchoma służy do wyrównywania nieprawidłowości (szczytów i dolin) w celu łatwego rozpoznania trendów. 1. Po pierwsze, spójrz na naszą serię czasową. 2. Na karcie Dane kliknij pozycję Analiza danych. Uwaga: nie można znaleźć przycisku analizy danych Kliknij tutaj, aby załadować dodatek Analysis ToolPak. 3. Wybierz opcję Moving Average i kliknij przycisk OK. 4. Kliknąć w polu Zakres wejściowy i wybrać zakres B2: M2. 5. Kliknij w polu Interwał i wpisz 6. 6. Kliknij w polu Zakres wyjściowy i wybierz komórkę B3. 8. Wykres wykresu tych wartości. Objaśnienie: ponieważ ustawiamy przedział na 6, średnia ruchoma jest średnią z poprzednich 5 punktów danych i bieżącego punktu danych. W rezultacie szczyty i doliny są wygładzone. Wykres pokazuje tendencję wzrostową. Excel nie może obliczyć średniej ruchomej dla pierwszych 5 punktów danych, ponieważ nie ma wystarczająco dużo poprzednich punktów danych. 9. Powtórz kroki od 2 do 8 dla przedziału 2 i przedziału 4. Podsumowanie: Im większy odstęp, tym więcej szczytów i dolin są wygładzone. Im mniejsze odstępy, tym dokładniejsze są średnie ruchome do rzeczywistych punktów danych. Czy jest łatwy sposób zastosować wzór linii trendu z wykresu do dowolnej wartości X w programie Excel Na przykład chcę uzyskać wartość Y dla dany X 2 006,00. Ive już wzięła formułę i retyped to być: -0.000000000008X3 - 0.00000001X2 0.0003X - 0.0029 Ciągle dokonuję korekty do linii trendu, dodając więcej danych i nie chcę powtarzać tej formuły za każdym razem. Nie chcę głosować nad odpowiedzią vba linii trendu, ale chcę powiedzieć, że LINEST jest o wiele łatwiejsze niż podejście VBA, ponieważ używa on obliczeń bezpośrednio, a nie formuły, która może nie być sformatowana z wystarczającą dokładnością (zobacz wcześniejszy komentarz WWhalley: użyj formatu liczbowego 0.000000000000E00, aby poprawić dokładność formuły trendu). ndash Jon Peltier Nov 27 12 w 21:40 Znalazłem rozwiązanie, które działa dla każdego rodzaju trendów (oczywiście dla średniej ruchomej oczywiście). Możesz ustawić precyzję Datalabel w zależności od potrzeb. Dodać trend lub przeciętną linię do wykresu Dotyczy: Excel 2018 Word 2018 PowerPoint 2018 Excel 2017 Word 2017 Outlook 2017 PowerPoint 2017 Więcej. Mniej Aby wyświetlić wykresy danych lub średnie kroczące na utworzonym wykresie. możesz dodać linię trendu. Możesz także poszerzyć linię poza faktyczne dane, aby pomóc przewidzieć przyszłe wartości. Na przykład kolejna liniowa tendencja prognozuje dwa kwartały przed sobą i wyraźnie wskazuje na tendencję wzrostową, która wygląda obiecująco na przyszłą sprzedaż. Możesz dodać trend do wykresu 2-D, który nie jest ułożony w stos, w tym obszar, pasek, kolumna, linia, czas, rozproszenie i bańka. Nie można dodać trendu do ułożonych, 3-D, radarowych, kołowych, powierzchniowych lub donutowych. Dodawanie trendu Na wykresie kliknij serie danych, do których chcesz dodać linię trendu lub średnią ruchu. Linia trendu rozpoczyna się od pierwszego punktu danych wybranej serii danych. Zaznacz pole Trendline. Aby wybrać inny typ linii trendu, kliknij strzałkę obok linii Trendline. a następnie kliknij Wykład. Prognoza liniowa. lub dwie średnie ruchy okresowe. Aby uzyskać dodatkowe trendy, kliknij Więcej opcji. Jeśli wybierzesz opcję Więcej opcji. kliknij żądaną opcję w panelu Format trendline w opcji Trendline. Jeśli wybierzesz Wielomian. wprowadź najwyższą moc dla zmiennej niezależnej w polu Zamów. Jeśli wybierzesz Przeprowadzka Średnia. wprowadź liczbę okresów używanych do obliczania średniej ruchomej w polu Okres. Wskazówka: Linia trendu jest najbardziej dokładna, gdy jej wartość kwadratowa R (liczba od 0 do 1, która pokazuje przybliżone wartości dla trendu odpowiadają rzeczywistym danymi) jest równa lub zbliżona 1. Gdy dodasz linię odniesienia do swoich danych , Program Excel oblicza automatycznie wartość R kwadratową. Możesz wyświetlić tę wartość na wykresie, sprawdzając wartość kwadratową R w polu wykresu (panel Format Trendline, Opcje Trendline). Więcej informacji na temat wszystkich opcji linii trendu można znaleźć w poniższych sekcjach. Linia liniowa Linia ta wykorzystuje ten typ trendu, aby utworzyć linię prostą dopasowaną do prostych liniowych zestawów danych. Twoje dane są liniowe, jeśli wzorzec w punktach danych wygląda jak linia. Linia trendu zazwyczaj pokazuje, że coś rośnie lub maleje w stałym tempie. Linia liniowa używa tego równania do obliczania najmniejszych kwadratów dopasowanych do linii: gdzie m jest nachyleniem a b jest przecinkami. Następująca liniowa tendencja pokazuje, że sprzedaż lodówek konsekwentnie wzrosła w ciągu 8 lat. Zauważ, że wartość kwadratowa R (liczba od 0 do 1, która pokazuje, jak blisko szacowane wartości dla trendu odpowiadają Twoim rzeczywistym danymi) wynosi 0.9792, co jest dobrym dopasowaniem linii do danych. Pokazując linię zakrzywioną najlepiej dopasowaną, ta tendencja jest użyteczna, gdy szybkość i szybkość zwiększa się lub szybko maleje. Logarytmiczna linia może używać wartości ujemnych i pozytywnych. Linia logarytmiczna wykorzystuje to równanie do obliczania najmniejszych kwadratów dopasowanych do punktów: gdzie c i b są stałymi, a ln jest naturalną funkcją logarytmu. Poniższa logarytmiczna tendencja przewiduje przewidywany wzrost populacji zwierząt na obszarze o stałej przestrzeni, gdzie liczba ludności wyrównała się w miarę zmniejszania się przestrzeni dla zwierząt. Warto zauważyć, że wartość kwadratowa R wynosi 0.933, co jest stosunkowo dobrym dopasowaniem linii do danych. Ta tendencja jest przydatna, gdy Twoje dane wahają się. Na przykład podczas analizowania zysków i strat w dużym zbiorze danych. Kolejność wielomianu może być określona liczbą fluktuacji danych lub liczbą zakrętów (wzgórz i dolin) pojawiających się na krzywej. Zwykle pojedyńcza linia Order 2 ma tylko jedno wzgórze lub dolinę, zlecenie 3 ma jedno lub dwa wzgórza lub doliny, a zlecenie 4 ma do trzech wzgórz lub dolin. Wielomianowa lub krzywoliniowa linia wykorzystuje to równanie do obliczania najmniejszych kwadratów pasujących do punktów: gdzie b i są stałymi. Następująca kolejność wielomianów zlecenia 2 (jeden wierzchołek) pokazuje zależność między prędkością jazdy a zużyciem paliwa. Zwróć uwagę, że wartość kwadratowa R wynosi 0.979, która jest zbliżona do 1, więc linie są dobrze dopasowane do danych. Pokazując zakrzywioną linię, ten trend jest użyteczny dla zestawów danych, które porównują pomiary zwiększające się w określonym tempie. Na przykład przyspieszenie samochodu wyścigowego w odstępach 1-sekundowych. Jeśli dane zawierają zero lub ujemne wartości, nie można utworzyć linii trendu mocy. Linia mocy używa tego równania do obliczania najmniejszych kwadratów dopasowanych do punktów: gdzie c i b są stałymi. Uwaga: ta opcja nie jest dostępna, jeśli dane zawierają wartości ujemne lub zerowe. Poniższy wykres pomiaru odległości przedstawia odległość w milisekundach. Linia trendu wyraźnie wskazuje na rosnące przyspieszenie. Warto zauważyć, że wartość kwadratowa R wynosi 0.986, co jest niemal idealnym dopasowaniem linii do danych. Pokazując zakrzywioną linię, ta tendencja jest użyteczna, gdy wartości danych wzrastają lub maleją w stale rosnących stawkach. Nie można utworzyć wykładniczej linii trendu, jeśli dane zawierają zero lub ujemne wartości. Linia wykładnicza używa tego równania do obliczania najmniejszych kwadratów pasujących do punktów: gdzie c i b są stałymi, a e jest podstawą naturalnego logarytmu. Następująca uwypuklająca linia wskazuje na malejącą ilość węgla 14 w obiekcie w miarę jego upływu. Warto zauważyć, że wartość kwadratowa R wynosi 0.990, co oznacza, że ​​linia idealnie pasuje do danych. Moving Average trendline Ten trend uniemożliwia fluktuacje danych w celu bardziej wyraźnego przedstawienia wzoru lub tendencji. Średnia ruchoma używa określonej liczby punktów danych (ustawionych przez opcję Okres), średnie ich i używa średniej wartości jako punktu w linii. Na przykład, jeśli okres jest ustawiony na 2, średnia średnich dwóch pierwszych punktów danych jest używana jako pierwszy punkt w ruchomym średnim zakresie. Średnia sekund i trzeciego punktu danych jest używana jako drugi punkt w linii trendu itp. Średniometr ruchomy wykorzystuje to równanie: liczba punktów w ruchomym średnim zakresie jest równa łącznej liczbie punktów w serii, minus numer podany w danym okresie. Na wykresie rozproszonym trend jest oparty na kolejności wartości x na wykresie. Aby uzyskać lepszy wynik, posortuj x wartości przed dodaniem średniej ruchomej. Poniższa średnia ruchoma wskazuje na liczbę domów sprzedawanych w okresie 26 tygodni. Średnie oczekiwania: jakie są ich jednymi z najbardziej popularnych wskaźników technicznych, średnie kroczące są używane do pomiaru kierunku bieżącej tendencji. Każdy typ średniej ruchomej (powszechnie napisany w tym samouczku jako MA) jest wynikiem matematycznym, który jest obliczany przez uśrednienie wielu poprzednich punktów danych. Po ustaleniu średniej wynikającej z wykresu jest następnie wykreślana na wykresie, aby umożliwić przedsiębiorcom przeglądanie wygładzonych danych, a nie koncentrowanie się na codziennych wahaniach cen, które są nieodłączne dla wszystkich rynków finansowych. Najprostszą formą średniej ruchomej, znanej jako zwykła średnia ruchoma (SMA), oblicza się biorąc średnią arytmetyczną danego zestawu wartości. Na przykład, aby obliczyć podstawową 10-dniową średnią ruchoma, należy dodać do ceny zamknięcia z ostatnich 10 dni, a następnie podzielić wynik o 10. Na rysunku 1 suma cen za ostatnie 10 dni (110) jest podzielony przez liczbę dni (10), aby osiągnąć średnią z 10 dni. Jeśli zamiast tego przedsiębiorca chciałby wyznaczyć średnią na 50 dni, to taki sam kalkulator zostanie dokonany, ale obejmowałby ceny w ciągu ostatnich 50 dni. Średnia uzyskana poniżej (11) uwzględnia przeszłe 10 punktów danych, aby dać handlowcom pojęcie o tym, jak dany składnik aktywów jest wyceniony w stosunku do ostatnich 10 dni. Być może zastanawiasz się, dlaczego techniczni handlowcy nazywają to narzędzie średnią ruchomą, a nie zwykłą średnią. Odpowiedź jest taka, że ​​w miarę pojawiania się nowych wartości najstarsze punkty danych muszą zostać usunięte z zestawu, a nowe punkty muszą zostać zastąpione. Tak więc zestaw danych nieustannie przenosi się do nowych danych, gdy tylko będzie dostępny. Ta metoda obliczeń zapewnia, że ​​tylko rozliczane są bieżące informacje. Na rysunku 2, po dodaniu nowej wartości 5 do zestawu, czerwone pole (reprezentujące ostatnie 10 punktów danych) przesuwa się w prawo, a ostatnia wartość 15 zostaje pomniejszona z obliczenia. Ponieważ stosunkowo niewielka wartość 5 zastępuje dużą wartość 15, można oczekiwać, że średnia z danych zmniejszy się, co robi, w tym przypadku od 11 do 10. Co robi średnie ruchy Jak raz wartości MA zostały obliczone, są one wykreślane na wykresie, a następnie połączone w celu utworzenia średniej ruchomej linii. Te zakrzywione linie są wspólne na wykresach technicznych podmiotów gospodarczych, ale jak one są stosowane mogą się znacznie różnić (więcej o tym później). Jak widać na rysunku 3, można dodać więcej niż jedną średnią ruchu do dowolnego wykresu, dostosowując liczbę okresów używanych do obliczania. Te zakrzywione linie wydają się najpierw rozpraszać lub mylić, ale przyzwyczaili się do nich, gdy czas się trwa. Czerwona linia jest po prostu średnią ceną w ciągu ostatnich 50 dni, a niebieska linia jest średnią ceną w ciągu ostatnich 100 dni. Teraz, gdy zrozumiesz średnią ruchomej i jak wygląda, dobrze wprowadź inny typ średniej ruchomej i sprawdź, jak różni się od wspomnianej wcześniej prostej średniej ruchomej. Prosta średnia ruchoma jest bardzo popularna wśród przedsiębiorców, ale podobnie jak wszystkie wskaźniki techniczne, ma swoje krytyki. Wiele osób twierdzi, że użyteczność SMA jest ograniczona, ponieważ każdy punkt serii danych jest ważony tak samo, niezależnie od miejsca, w którym występuje w sekwencji. Krytycy argumentują, że najnowsze dane są bardziej znaczące niż starsze dane i powinny mieć większy wpływ na końcowy wynik. W odpowiedzi na tę krytykę przedsiębiorcy zaczęli przywiązywać większą wagę do ostatnich danych, co doprowadziło do powstania różnego rodzaju nowych średników, z których najbardziej popularna jest wykładnicza średnia ruchoma (EMA). (Aby uzyskać więcej informacji, zobacz Podstawy średnich ruchów ważonych i Jaka jest różnica między SMA a EMA) Średnia przemieszczeniowa wykładnicza Średnia średnica ruchoma jest rodzajem średniej ruchomej, która przynosi większą wagę do ostatnich cen w celu zwiększenia jej wrażliwości do nowych informacji. Uczenie skomplikowanego równania w obliczaniu EMA może być niepotrzebne dla wielu przedsiębiorców, ponieważ prawie wszystkie pakiety wykresów wykonują obliczenia dla Ciebie. Jednak dla ciebie matematyki są tutaj równania EMA: przy użyciu formuły do ​​obliczania pierwszego punktu EMA można zauważyć, że nie ma wartości dostępnej do wykorzystania w poprzedniej EMA. Ten mały problem można rozwiązać, uruchamiając obliczenie przy użyciu prostej średniej ruchomej i kontynuując od powyższej formuły stamtąd. Przygotowaliśmy przykładowy arkusz kalkulacyjny zawierający rzeczywiste przykłady obliczania zarówno prostej średniej ruchomej, jak i wykładniczej średniej ruchomej. Różnica między EMA i SMA Teraz, gdy masz lepsze zrozumienie, jak obliczany jest SMA i EMA, spójrz, jak te średnie różnią się. Patrząc na obliczenie EMA, zauważysz, że większy nacisk położono na ostatnie punkty danych, co czyni go typem średniej ważonej. Na rysunku 5 liczba okresów czasu używanych w każdej średniej jest identyczna (15), ale EMA reaguje szybciej na zmiany cen. Zauważ, że EMA ma wyższą wartość, gdy cena wzrasta i spada szybciej niż SMA, gdy cena maleje. Ta reakcja jest głównym powodem, dla którego wielu przedsiębiorców wolą używać EMA w SMA. Co robi różniące się średnie Średnie ruchome są całkowicie dostosowywanym wskaźnikiem, co oznacza, że ​​użytkownik może swobodnie dobrać dowolną ramkę czasową, jaką chcą podczas tworzenia średniej. Najczęstsze okresy czasu użyte w ruchomej średniej to 15, 20, 30, 50, 100 i 200 dni. Im krótszy jest okres generowania średniej, tym bardziej wrażliwe będą zmiany cen. Im dłuższy jest czas, tym mniej wrażliwy lub bardziej wygładzony, średnia będzie. Nie ma odpowiedniej ramki czasowej, którą można użyć podczas konfigurowania średnich kroczących. Najlepszym sposobem na określenie, który z nich najlepiej Ci odpowiada, jest eksperymentowanie z różnymi okresami czasu, aż znajdziesz taki, który pasuje do Twojej strategii.

Comments